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Abstract
The Sparsest 2-Spanner problem, where given an unweighted, undirected graph G = (V,E) we try to

find the smallest subgraph in which all pairwise distances are within a factor 2 of their original distances,
has been known to admit an O(log(m/n))-approximation since [12]. When we add fault-tolerance to this
problem, it is known to admit an O(log n)-approximation [9], which while independent of the amount of
fault-tolerance can be much larger than O(log(m/n)). It has been an open question whether the fault-
tolerant 2-spanner problem admits an O(log(m/n))-approximation. We partially answer this question:
for k-fault tolerant 2-spanner, we give an algorithm which is an O(log(km/n))-approximation, and under
an additional assumption (that the minimum degree in G is at least k) is an O(log(m/n))-approximation.

1 Introduction
Graph spanners are subgraphs that approximately preserve distances in graphs. More formally, they are
defined as follows.

Definition 1. A subgraph G′ of a graph G = (V,E) is a t-spanner of G if dG′(u, v) ≤ t · dG(u, v) for all
u, v ∈ V .

The value t is known as the stretch. In this paper we will only be concerned with 2-spanners, so we will
use “spanner” and “2-spanner” interchangeably.

Spanners were introduced by [13] and [14] in the context of distributed computing. While spanners
have since found use throughout theoretical algorithms and in many applications (ranging from network
routing [1, 16]to linear systems solving [11, 15], distributed computing still forms an important setting for
spanners.

However, one important property that is not captured by this definition is the possibility of failure.
Not only does fault-tolerance introduce interesting mathematical questions, due to their close connection to
distributed computing and the prevalence of faults in distributed contexts it is particularly important for
spanners to be tolerant to failures. The basic definition, introduced by Chechik et al. [7], is the following.

Definition 2. A subgraph G′ of a graph G = (V,E) is k-vertex fault tolerant (k-VFT) 2-spanner of G if

dG′\F (u, v) ≤ 2 · dG\F (u, v)

for all F ⊆ V with |F | ≤ k and u, v ∈ V \ F .

We note that we could have used edge faults rather than vertex faults, i.e., let F ⊆ E with |F | ≤ k.
These behave differently for stretch values larger than 2 (see [5] for a discussion of the major differences),
but for stretch 2 are equivalent. For completeness, we prove this equivalence in Appendix A. So for the
remainder of the paper, we use “vertex fault-tolerant” and “fault-tolerant” interchangeable.

Since their introduction in [7], fault-tolerant spanners and related objects have been studied exten-
sively [2–6,9, 10]. However, the vast majority of this work has has focused on existential questions, particu-
larly around sparsity, where we attempt to understand the best tradeoff between stretch and size that holds
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in all graphs. But for stretch values below 3, it is not possible to guarantee the existence of spanners with
subquadratic edges, even without fault-tolerance, and so no tradeoff is possible.

This impossibility motivated Kortsarz and Peleg [12] to study the Minimum 2-Spanner problem, where
instead of trying to find a universal tradeoff we instead attempt per-instance optimization. That is, given a
graph G = (V,E), the goal is to compute the smallest 2-spanner of G (measured by number of edges). While
this is NP-hard, they showed that it could be approximated in polynomial-time to within an O(log(m/n))-
factor, where m = |E| and n = |V |. In the fault-tolerant context, the related problem of Minimum k-Fault
Tolerant 2-Spanner (given a graph, find the smallest possible k-fault tolerant 2-spanner) was introduced by [8],
who gave an O(k log n)-approximation, which was then improved to an O(log n)-approximation (independent
of k) by [9].

This leads to an obvious question: is there an O(log(m/n))-approximation for Minimum k-Fault Tolerant
2-Spanner? Or is O(log n) the best we can hope for?

1.1 Our Results
In this paper we make the first progress on the k-fault tolerant 2-spanner problem since [9]: we give an
O(log(km/n))-approximation, and under a relatively mild assumption, that every node has degree Ω(k) in
G (or even that the optimum k-fault tolerant 2-spanner has size Ω(kn)), we improve this to an O(log(m/n))-
approximation. Unlike the previous algorithms for this problem [8,9], our algorithm is not based on rounding
an LP relaxation, but is purely combinatorial: we show how to modify the greedy algorithm of [12] to take
fault-tolerance into account. We also show that our analysis is tight by providing construction of a family of
graphs for which our algorithm gives exactly O(log km

n )-approximation which is based on the construction
described in [12].

2 Preliminaries
We begin with some basic notation. Given a graph G = (V,E), we will typically use n to denote |V | and m
to denote |E|. For U ⊆ V , we let E(U) = {(v1, v2) ∈ E : v1, v2 ∈ U} denote edges with both endpoints in
U . We let NG(v) = {u : (u, v) ∈ E} denote the neighbors of v in G.

Let E′ ⊆ E be a set of edges. We say v covers e = (u1, u2) using edges in E′ if (v, u1) ∈ E′ and
(v, u2) ∈ E′. We say that e = (u1, u2) is covered α times by E′ if there are at least α nodes that cover e
using edges in E′.

The following alternative characterization of fault-tolerant 2-spanners was proved in [9], and will be
particularly useful for us.

Theorem 1 ( [9]). Let G = (V,E), and let G′ = (V,E′) be a subgraph of G. Then G′ is a k-VFT 2-spanner
of G if and only if e is covered k + 1 times by E′ for every e ∈ E \ E′.

3 Algorithm
As mentioned in Section 1.1, our algorithm is based on modifying the greedy algorithm of [12] to the fault-
tolerant setting. In particular, one can (at least informally) think of the algorithm of [12] as attempting to
find the “cheapest” way of covering all edges of E at least once (or including them). Thanks to Theorem 1,
we know that our goal is to essentially cover every edge at least k + 1 times.

Before formally giving our algorithm, we first set up some more notation. For S, P ⊂ E and U ⊂ V ,
denote by R(P,U) the set of edges in G induced by U restricted to P , namely, R(P,U) = E(U) ∩ P .

Let h be a function defined from E to 2V , let P ⊂ E, denote

covG(P, h, v) = |{e ∈ R(P,NG(v)) : v /∈ h(e)}|

to be the number of edges in P that is covered by v using edges in G with v /∈ h(e).
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Define maximum density function to be:

ρG(P, S, h, v) = max
U⊆NG(v)

{
|{e ∈ R(P,U) : v /∈ h(e)}|+

∑
w∈U :(v,w)/∈S(k + 1− |h(v, w)|)
|U |

}

We can now formally give our algorithm, in Algorithm 1. After defining the algorithm formally, we
provide some intuition.

Algorithm 1 Greedy Algorithm
Input: Given a Graph G = (V,E) and Fault Tolerant Parameter k

Set HU ← E;HC ← ∅;HS ← ∅;Ccur ← {∅ : ∀e ∈ E};
while ∃ v ∈ V s.t. ρG(H

U ,HS , Ccur, v) ≥ 1 do
choose v = argmax

u∈V
ρG(H

U ,HS , Ccur, u);

(Let the corresponding densest subset be Uv)
HS ← HS ∪ {(v, u) : u ∈ Uv};
for e ∈ R(HU , Uv) and v /∈ Ccur(e) do
Ccur(e)← Ccur(e) ∪ {v}
if |Ccur(e)| == k + 1 then
HC ← HC ∪ {e};

end if
end for
HC ← HC ∪HS ;
HU ← HU \HC ;

end while
return HS ∪HU

We now provide some intuition. Throughout the algorithm, we maintain three sets of edges: HU , HC

and HS . The set HS contains spanner edges, which means all the edges that were already added to the
constructed spanner. The set HC consists of all the edges that “have been taken care of” (which we also
refer to as “covered edges”), which means each edge in HC is either included HS or is covered at least k+1
times by HS . The set HU contains all the edges that “have not been taken care of” (the “uncovered edges”):
every edge in HU is neither in the spanner, nor been covered at least k + 1 times. We maintain a function
Ccur to record the set of vertices that covers each edge using HS .

Our algorithm operates by repeatedly performing the following operation. For every vertex v, we consider
the edges in R(HU , NG(v)) (the set of uncovered edges induced by neighbors of v) that have not already
been covered by v using HS . In this graph we look for a subset Uv of maximum density. Then we choose
the densest set among all the sets {Uv : v ∈ V }. If we choose Uw, then we add a star to HS consisting of the
edges between w and Uw. In this way, we cover all the edges in R(HU , Uw) (that have not been covered by
v before) one additional time using v, while adding only a small number of edges (|Uw|) to the spanner. It
is worth mentioning that we have to maintain the Ccur function since the same vertex might be repeatedly
chosen, and an edge can only be covered one time by the same vertex.

Intuitively, the edge that can be covered one time by choosing w are given ”value” of 1, the edge we
add to HS (say e) can be seen as being directly covered to k + 1 times and thus are given k + 1 − Ccur(e)
credits, so the total value we are getting toward covering edges by Uw is |e ∈ R(HU , Uw) : w /∈ Ccur(e)| +∑

x∈Uw:(x,w)/∈HS (k + 1− |Ccur(x,w)|) (Note that each edge can only be added to the spanner for one time,
therefore we shouldn’t give anymore credit after it’s chosen). Since we are trying to choose the most cost-
effective subset in neighbors of w, the density function is defined as above. Note that this density function
is a generalization of [12] since if k = 0, then the density function described above is exactly equivalent to
the one in [12] plus a constant.
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4 Analysis
Let r = (k + 1) |E|

|V | and let f = log r. Denote ρiG to be the maximum density achieved in iteration i, then
since HU is non-increasing, Ccur(e) is non-decreasing for every e ∈ E in size at every step, we can have
ρiG ≥ ρjG for j > i. We divide the iterations of the algorithm into f phases based on this density. The first
phase starts in the first iteration, and consists of all iterations where ρG(H

U ,HS , Ccur, v) ≥ r
2 is satisfied

when we select v. Then for i ≥ 2, phase i consists of iterations where r
2i ≤ ρG(H

U ,HS , Ccur, v) < r
2i−1 is

satisfied when we select v.
For the rest of the analysis, we will use the following notation:

1. Vi is the set of vertices that are chosen in phase i

2. HS
i is the set of edges added to HS in phase i, let Si = ∪ii=1H

S
i

3. HU
i is the set of edges left in HU at the end of phase i

4. Ci as the function that records the set of vertices which are covering edge e using ∪j∈[i]H
S
j (edges

added to spanner in the first i phases) for each e ∈ E at the end of phase i.

5. hS
i (v) as the set of edges that are added (for the first time) to HS when vertex v is chosen in phase i

but did not exist in HS before v is chosen in phase i.

6. hT
i (v) as the set of edges that are covered by v using hS

i (v) in phase i

7. σi =
∑

v∈Vi
{|hT

i (v)|+
∑

e∈hS
i (v)(k + 1− |Ci(e)|)} as the total times of covers in phase i

8. Let E′ ⊂ E. An optimal k-VFT 2-spanner for E′ is a minimum subset E′′ ⊂ E such that every edge
in E′ \ E′′ is covered by at least k + 1 times. Let H∗ be the optimal spanner for G.

Note that in our algorithm, we pick the vertex that gives the maximum density in each iteration, which
intuitively reflects a strategy to cover the most edges while cost as less as possible to construct spanner. To
quantify how much advantage this greedy strategy takes, we will first compare the number of covers we make
with the number of edges we add to construct spanner in each iteration:

Lemma 2. For every 1 ≤ i ≤ f ,
σi

|HS
i |
≥ r

2i

Proof. According to definition, in phase i, whenever we choose a vertex v, density ρ(HU ,HS , Ccur, v) ≥ r
2i ,

therefore, for v ∈ Vi, we have:

σi

|HS
i |

=

∑
v∈Vi
{|hT

i (v)|+
∑

e∈hS
i (v)(k + 1− |Ci(e)|)}

|HS
i |

≥
∑

v∈Vi
{|hT

i (v)|+
∑

e∈hS
i (v)(k + 1− |Ci(e)|)}∑

v∈Vi
|hS

i (v)|

≥ min
v∈Vi

{
|hT

i (v)|+
∑

e∈hS
i (v)(k + 1− |Ci(e)|)
|hS

i (v)|

}
≥ r

2i

·
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Let H∗
i ⊂ E be the optimal spanner for HU

i , where each edge e in HU
i \ H∗

i is covered at least k + 1
times. Denote G∗

i = (V,H∗
i ). It’s easy to see that |H∗| ≥ |H∗

i |.
Define

ρ∗i (v) =
covG∗

i
(HU

i , Ci, v) +
∑

w∈NG∗
i
(v):(v,w)/∈Si

(k + 1− Ci(v, w))

|NG∗
i
(v)|

=

∣∣{e ∈ R(HU
i , NG∗

i
(v)) : v /∈ Ci(e)}

∣∣+∑
w∈NG∗

i
(v):(v,w)/∈Si

(k + 1− Ci(v, w))

|NG∗
i
(v)|

Lemma 3. For every 1 ≤ i ≤ f ,
ρ∗i (v) <

r

2i

Proof. Note that according to our definition of density,

ρG∗
i
(HU

i , Si, Ci, v) = max
U⊂NG∗

i
(v)
{

∣∣{e ∈ R(HU
i , U) : v /∈ Ci(e)}

∣∣+∑
w∈U :(v,w)/∈Si

(k + 1− Ci(v, w))

|U |
}

Therefore,
ρ∗i (v) ≤ ρG∗

i
(HU

i ,HS
i , Ci, v)

Meanwhile,

ρG∗
i
(HU

i ,HS
i , Ci, v) = max

U⊂NG∗
i
(v)
{

∣∣{e ∈ R(HU
i , U) : v /∈ Ci(e)}

∣∣+∑
w∈U :(v,w)/∈Si

(k + 1− Ci(v, w))

|U |
}

≤ max
U⊂NG(v)

{

∣∣{e ∈ R(HU
i , U) : v /∈ Ci(e)}

∣∣+∑
w∈U :(v,w)/∈Si

(k + 1− Ci(v, w))

|U |
}

= ρG(H
U
i ,HS

i , Ci, v)

<
r

2i

We now prove the following claim:

Lemma 4. For every 1 ≤ i ≤ f , ∑
e∈HU

i
(k + 1− |Ci(e)|)
|H∗|

<
r

2i−1

Proof. According to the definition of k-VFT 2-spanner, we can have:∑
e∈HU

i

(k + 1− |Ci(e)|) ≤
∑
v∈V

covG∗
i
(HU

i , Ci, v) +
∑

e∈H∗
i \Si

(k + 1− |Ci(e)|)

=
∑
v∈V

covG∗
i
(HU

i , Ci, v) +
1

2

∑
v∈V

∑
u∈NG∗

i
(v):(u,v)/∈Si

(k + 1− |Ci((u, v))|)

≤
∑
v∈V

covG∗
i
(HU

i , Ci, v) +
∑

u∈NG∗
i
(v):(u,v)/∈Si

(k + 1− |Ci((u, v))|)


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Therefore,∑
e∈HU

i
(k + 1− |Ci(e)|)
|H∗|

≤
∑

e∈HU
i
(k + 1− |Ci(e)|)
|H∗

i |

≤

∑
v∈V

{
covG∗

i
(HU

i , Ci, v) +
∑

u∈NG∗
i
(v):(u,v)/∈Si

(k + 1− |Ci((u, v))|)
}

|H∗
i |

=

∑
v∈V

{
covG∗

i
(HU

i , Ci, v) +
∑

u∈NG∗
i
(v):(u,v)/∈Si

(k + 1− |Ci((u, v))|)
}

1
2

∑
v∈V NG∗

i
(v)

≤ 2 ·max
v∈V

covG∗
i
(HU

i , Ci, v) +
∑

u∈NG∗
i
(v):(u,v)/∈Si

(k + 1− |Ci((u, v))|)

NG∗
i
(v)

= 2 ·max
v∈V

ρ∗i (v)

Thus, by lemma 3, we have ∑
e∈HU

i
(k + 1− |Ci(e)|)
|H∗|

<
r

2i−1

Corollary 5. |HU |
|H∗| < 2

Proof.

|HU
i | =

∑
e∈HU

i

1 ≤
∑

e∈HU
i

(k + 1− |Ci(e)|)

⇒ |H
U
i |

|H∗|
<

r

2i−1

⇒ |H
U |

|H∗|
< 2

Lemma 6. For every 1 ≤ i ≤ f ,
|HS

i |
|H∗|

≤ 2

Proof. By combining previous lemmas,
For i > 1, we have:

|HS
i |

|H∗|
≤

2i

r · σi

|H∗|
≤

2i

r ·
∑

e∈HU
i−1

(k + 1− |Ci(e)|)
|H∗

i |
<

2i

r
· r

2i−1
= 2

For i = 1, we have:
|HS

1 |
|H∗|

≤
2
r · σ1

|H∗|
≤

2

(k+1)
|E|
|V |
· (k + 1)|E|

|V |
= 2

Corollary 7. |HS |
|H∗| = O(log r)
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Proof. By lemma 6,
|HS |
|H∗|

=

∑f
i=1 |HS

i |
|H∗|

= 2 log r = O(log r)

From Corollaries 5 and 7, we conclude our main result.

Theorem 8. Algorithm 1 is an O(log(kmn ))-approximation algorithm for k-vertex fault tolerant 2-spanner
problem.

Now, notice that in above analysis, we only expanded r in lemma 6. So if we re-define r = |E|
|V | , all above

lemmas and corollaries hold except for lemma 6 and corollary 7.

Lemma 9. Assume G has minimum degree at least k + 1, let r = |E|
|V | , then for every 1 ≤ i ≤ f ,

|HS
i |

|H∗|
≤ 2

Proof. For i > 1, we have:

|HS
i |

|H∗|
≤

2i

r · σi

|H∗|
≤

2i

r ·
∑

e∈HU
i−1

(k + 1− |Ci(e)|)
|H∗

i |
<

2i

r
· r

2i−1
= 2

For i = 1, we have:
|HS

1 |
|H∗|

≤
2
r · σ1

|H∗|
≤

2
|E|
|V |
· (k + 1)|E|

(k + 1)|V |
= 2

Then we immediately have:

Corollary 10. Assume G has minimum degree at least k + 1, let r = |E|
|V | , then |HS |

|H∗| = O(log r)

Combining Corollaries 5 and 10 gives us another result.

Theorem 11. Assume the minimum degree of input graph is at least k + 1, Algorithm 1 is an O(log(mn ))-
approximation algorithm for k-vertex fault tolerant 2-spanner problem.

5 A Lower Bound
In this section, we provide construction of a family of graphs for which our algorithm gives exactly O(log km

n )-
approximation.

5.1 A Sketch of Construction
To get started, we first discuss one possible condition that our algorithm produces a huge gap. Denote
vertices with degree less than k + 1 by Vlow, vertices with degree at least k + 1 by Vhigh, edges with at
least one endpoint in Vlow by Elow, edges with both endpoints in Vhigh by Ehigh. Let Glow = (Vlow, Elow)
be low-degree subgraph, Ghigh = (Vhigh, Ehigh) be high-degree subgraph. Denote |Vlow| = nl, Vhigh = nh,
|Elow| = ml, |Ehigh| = mh. Note that, by 1, all edges in Elow should be included in any valid k-VFT
2-spanner.

Let OPTlow be the optimal spanner for Glow, ALGlow be the spanner generated by our algorithm for
Glow, OPThigh and ALGhigh are defined similarly. By 11, it is guaranteed that |ALGhigh|

|OPThigh| ≤ log mh

nh
.
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Now, if ml = O(nl), nh = O(
√
nl log nl), mh = O(nl log nl), k be poly(

√
nl log nl), then, log m

n =
O(log log nl), however log k = O(log nl)

Assuming our algorithm basically takes every edge in Ghigh, i.e. |ALGhigh| = O(nl log nl), and assum-
ing the gap is exactly O(log km

n ) = O(log nl), i.e. |OPThigh| = O( nl lognl

log
√
nl log nl

) = O(nl), then, |ALG| =
|ALGhigh| + |ALGlow| = O(nl log nl) + O(nl) = O(nl log nl), |OPT | = |OPThigh| + |OPTlow| = O(nl), our
algorithm indeed gives a O(log nl) = O(log k) = O(log km

n ) approximation instead of O(log m
n ), and the gap

location is at the top.

5.2 Construction of Tight Example for k =
√

n/ log n

5.2.1 The Graph Gk

Based on the construction provided by [12], we give a slightly modified graph Gk for which our algorithm
gives O(log k) approximation.

Let q = 2p for an integer p. Denote q′ = q − 4, let U = {u1, u2, ..., uq′} and W = {w1, w2, ..., wq′}.
Break the set U into p − 2 subsets by successive halving, letting U1 contain the first q

2 vertices, U2 contain
the next q

4 vertices, and so on. Also define two additional sets A and B, let A = ∪k+1
i=1Ai where Ai =

{ai(1), ai(2), ai(3), ai(4)}, let B = ∪k+1
i=1Bi where Bi = {bi(1), bi(2), ..., bi(p− 2)}. The vertex set is U ∪W ∪

A ∪ B, note that the number of vertices is O(q) as long as k ≤ q
p . We shall further break each set Ui into

four equal-sized subsets Ui(j), for j = 1, 2, 3, 4. We now specify the edges:

1. (E1) For 1 ≤ i ≤ k + 1, For 1 ≤ j ≤ 4, ai(j) is connected to W ∪ ∪xUx(j)

2. (E2) For 1 ≤ i ≤ k + 1, For 1 ≤ j ≤ p− 2, bi(j) is connected to W ∪ Uj

3. (E3) The sets W and U are connected by a complete bipartite graph(that is, W and U are independent
sets, and every vertex of W is connected with every vertex of U

4. (E4) A and B are connected by a complete bipartite graph

5.2.2 The Approximation Ratio of the Greedy Algorithm on Gk

We shall now consider of the k-VFT 2-spanner problem on graph Gk defined above. First, we can observe
that this graph has a k-VFT 2-spanner of size O(kq) by taking the edge subsets E1 and E4. Therefore we
have that the optimal solution for Gk is O(kq).

However, we claim our algorithm will greedily take E2 and E4, which contains O(kq log q) edges. Our
algorithm will successively select b1(1), b2(1), ..., bk+1(1), then b1(2), b2(2), ..., bk+1(2),...,and at last b1(p −
2), b2(p− 2), ..., bk+1(p− 2) and add all the edges incidents on these vertices.

Claim 12. The first k vertices to be selected by our algorithm is b1(1), b2(1), ..., bk+1(1)

Proof. Let us first compute bounds of density for every v in the initial situation. Consider a vertex v ∈ A∪B,
and denote its corresponding densest subgraph by Uv, then the density ρ(HU , ∅, C, v) can be represented by:

ρ(HU , ∅, C, v) = |E(Uv)|+ (k + 1)|Uv|
|Uv|

=
|E(Uv)|
|Uv|

+ k + 1

which is exactly the density described in [12] plus a constant term. Since for any 1 ≤ j ≤ 4, a1(j), a2(j)..., ak+1(j)
shares the same neighbors, therefore

ρ(HU , ∅, C, a1(j)) = ρ(HU , ∅, C, a2(j)) = ... = ρ(HU , ∅, C, ak+1(j))
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for any 1 ≤ j ≤ p− 2, b1(j), b2(j)..., bk+1(j) shares the same neighbors, therefore

ρ(HU , ∅, C, b1(j)) = ρ(HU , ∅, C, b2(j)) = ... = ρ(HU , ∅, C, bk+1(j))

Thus it follows from Claim 5.2 in [12] that the first vertex selected by our algorithm belongs to {b1(1), b2(1)..., bk+1(1)},
and the densest subgraph is the entire neighborhood.

W.L.O.G. Suppose the first vertex selected by our algorithm is b1(1). Now, since the edges between
U1 and W are only covered once, so the maximum density of b2(1), b3(1), ..., bk+1(1) remains the highest.
Therefore, b2(1), b3(1), ..., bk+1(1) are successively selected in the following iterations.

At the end of the k + 1-th iteration, the situation becomes somewhat simpler. The edges between
b2(1), b3(1), ..., bk+1(1) with A, W and U1 are already spanned, all edges between W and U1, between A and
W , between A and U1 are covered k + 1 times and are thus been taken care of. Inductively, it follows by
arguments similar to the above that

Claim 13. For 1 ≤ j ≤ p − 2, in the j + i-th iteration, where 1 ≤ i ≤ k + 1, the vertex bi(j) is chosen by
our algorithm and all the edges adjacent edges are added to the spanner.

Combined with 12, we conclude:

Lemma 14. On graph Gk, the approximation of our algorithm is O(log q)=O(log k)

Now, we take k to be q
log q . Then our algorithm takes O(q2) edges and optimal solution takes O( q2

log q ).
Then since every vertex has more than k degrees in this graph, we immediately have:

Lemma 15. By plugging Gk into the high degree subgraph of the example described in 5.1, our algortihm
gives O(log km

n ) approximation ratio on this graph, where k =
√

n
logn .

Now We are going to generalize this example for both k >
√

n
log n and k <

√
n

logn cases.

5.3 Construction of Tight Example for General k
5.3.1 A Fact when k > poly(m/n)

Before we get into construction, let us first make a simple observation.

Lemma 16. If k > poly(m/n), then k is upper bounded by Õ(
√
n)

Proof. Since |Elow| ≥ |Vlow| and |Ehigh| ≥ 1
2 · (k + 1) · |Vhigh| ≥ 1

2 · (k + 1) · (n− |Vlow|). Therefore we have
a lower bound for the total number of edges in the graph,

m = |Ehigh|+ |Elow| ≥
1

2
· (k + 1) · n− 1

2
· (k − 1) · |Vlow|

Let k > 1
β (

m
n )α, α could be arbitrarily large, β could be arbitrarily small. Then, m < βk

1
αn. Thus we have

|Vlow| > (1− 2β · k
1
α

k
) · n

At the mean time,

k < |Vhigh| = n− |Vlow| < 2β · k
1
α

k
· n

⇒ k < (2βn)
1

2− 1
α = O(n

1
2−ϵ )

Therefore, when k > poly(mn ), k is upper-bounded by Õ(
√
n)
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5.3.2 Construction of General Counterexamples

For k >
√

n
log n , let the number of vertices in the low-degree subgraph be nl = O(n), the number of edges

in low-degree subgraph be ml = O(n), the number of vertices in high-degree subgraph be
√
n · logαn, where

α is a parameter, the number of edges in high-degree subgraph be n · log2αn. Then m = O(n · log2αn).
Therefore,

log
m

n
= O(log log n)

By directly plugging Gk described in 5.1 in the high-degree subgraph and make k to be:

k =

√
n · logαn

log(
√
n · logαn)

= O(
√
n · logα−1n)

Lemma 17. Our algorithm gives O(log km
n ) approximation on this graph

Proof. Our algorithm will take:

|ALG| = O(n) + n · log2α n = O(n · log2α n)

While the optimal solution would be:

|OPT | = O(n) +
n · log2α n

log(
√
n · logαn)

= O(n · log2α−1 n))

Therefore, the approximation ratio of our algorithm is:

|ALG|
|OPT |

= O(log n) = O(log
km

n
) >> O(log log n) = log

m

n

Note that k =
√

n
logn when α = 1/2, then k gets bigger when α grows. Since k is bounded by Õ(

√
n)

when k > poly(mn ), this family of graph is a general counterexample for the case k >
√

n
log n .

For k <
√

n
log n , let nl = O(n), ml = O(n), let the high-degree subgraph described in 5.1 be x duplication

of Gk, where each Gk contains
√

n log n
x vertices, therefore, nh =

√
n log n

x ·x =
√
x · n log n, mh = n log n

x ·x =

n log n. Take k to be:

k =

√
n logn

x

log
√

n log n
x

=

√
n

x log n

Then m = O(n log n), n = O(n),
log

m

n
= O(log log n)

Lemma 18. Our algorithm gives O(log km
n ) approximation on this graph

Proof. Our algorithm will take:

|ALG| = O(n) +O(n log n) = O(n log n)

While the optimal solution will take:

|OPT | = O(n) +O(
n log n

log
√
x · n log n

) = O(n)

10



So the approximation ratio of our algorithm is:

|ALG|
|OPT |

= O(log n) = O(log
km

n
) >> O(log log n) = log

m

n

Note that k =
√

n
logn when x = 1, which degenerates to our counterexample in 5.2. By making x bigger,

k turns smaller. Therefore, this family of graph is a general counterexample for the case k <
√

n
log n .

This construction builds a general counterexample for our algorithm and implies the analysis of O(log km
n )

approximation ratio bound is tight.

Lemma 19. Our algorithm gives O(log km
n ) approximation on the family of graph described in section 5
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A Equivalence of Vertex and Edge Fault-Tolerance
Now we prove edge fault setting is equivalent to vertex fault setting for stretch 2.

Definition 3. A subgraph G′ of a graph G = (V,E) is k-edge fault tolerant (k-EFT) 2-spanner of G if

dG′\F (u, v) ≤ 2 · dG\F (u, v)

for all F ⊆ E with |F | ≤ k and u, v ∈ V .

Theorem 20. Let G = (V,E), and let G′ = (V,E′) be a subgraph of G. Then G′ is a k-VFT 2-spanner of
G if and only if G′ is a k-EFT 2-spanner.

Proof. Let G′ be a k-VFT 2-spanner of G. Given arbitrary edge fault set F ⊆ E with |F | ≤ k. Let (u, v) ∈ E,
consider any edge e = (p, q) that lies on the shortest path between u and v in G \ F . If e ∈ E′ \ F , then
dG′\F (p, q) = 1, otherwise, by 1, e is covered k + 1 times by E′, so there is at least one path of length 2
between p and q in E′ \ F . Thus dG′\F (p, q) ≤ 2. Therefore, the shortest path between u and v is distorted
by at most 2, i.e. dG′\F (u, v) ≤ 2 · dG\F (u, v), which indicates G′ is a k-EFT 2-spanner of G.

Let G′ be a k-EFT 2-spanner of G. For the sake of contradiction, assume ∃(u, v) ∈ E such that (u, v) /∈ E′

and (u, v) is covered at most k times by E′, denote the vertices that covers (u, v) using edges in E′ by
w1, w2, ..., wx, where x ≤ k. Then if we take edge fault set F ⊆ E to be {(u,wi) : i ∈ [x]}, in the remaining
graph G′ \F there is no u− v path, while in G \F the edge (u, v) exists. Thus G′ is not a k-EFT 2-spanner
of G, giving the contradiction. Therefore, for every (u, v) ∈ E, either (u, v) ∈ E′ or (u, v) is covered at least
k + 1 times by E′, which indicates G′ is a k-VFT 2-spanner of G.
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