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Abstract

Learning from multiple modalities has recently been paid increasing attention1

in sentiment analysis tasks because of its ability to capture the complementary2

representation of the intrinsic multi-modal world. Recent deep learning-based3

multi-modal sentiment analysis methods trained on large-scale labeled data cannot4

guarantee good generalization to another target domain, because of the presence of5

domain shift. Multi-modal domain adaptation (MMDA) aims to address this issue6

by learning a transferable model with specific alignment across domains. However,7

existing MMDA methods only focus on the single-source scenario with only one8

labeled source domain. When labeled data is collected practically from multiple9

sources with different distributions, naive application of these single-source MMDA10

methods would fail without considering the domain shift among different sources.11

In this paper, we propose to study multi-source MMDA for visual-textual sentiment12

classification and design a novel multi-source multi-modal contrastive adversarial13

network, termed M2CAN, to learn domain-invariant multi-modal representations.14

Specifically, the designed M2CAN jointly optimizes three different alignment15

strategies: cross-modal contrastive alignment within each domain, cross-domain16

constrastive alignment for each modality, and cross-domain adversarial alignment17

on the fused multi-modal representations. After such alignments, different source18

and target domains are mapped into a shared multi-modal representation space. We19

conduct extensive experiments on a benchmark dataset with three domains and the20

results demonstrate that the proposed M2CAN significantly outperforms state-of-21

the-art domain adaptation approaches for visual-textual sentiment classification.22

Our source code will be released.23

1 Introduction24

Customers have become used to sharing their experiences and opinions of the products and service25

they purchase by posting reviews or comments on social networks [1, 2, 3, 4, 5, 6]. Sentiment analysis26

of the large-scale user-generated multimedia data plays a vitally important role in both customers’27

product selection and enterprises’ product improvement. On the one hand, it can influence customers’28

decision-making when selecting what they want. For example, if the feedback from other customers29

is dominated by negative comments, it is highly probable that the current customers change their30

attitudes to another brand. On the other hand, it can help enterprises to analyze the drawbacks revealed31

by customers and correspondingly improve the quality of their products and services [1, 7]. Although32

text is one direct and popular modality to express customers’ opinions [2], sentiment analysis solely33

from text may not well reflect the customers’ actual feelings. For example, if we see a comment like34

“what a good restaurant!”, we may conclude that the customer is satisfied with the dining; but if there35

is an also an affiliated image showing a dirty and disorderly environment, we can infer that the text is36

actually sarcasm and that the customer is upset about the dining environment. Therefore, sentiment37



analysis from multiple modalities, such as image and text, has attracted increasing research attention38

with the help of easy photographing on mobile devices.39

Recently, deep neural networks (DNNs) have achieved the state-of-the-art performances on visual-40

textual sentiment classification by effectively exploring the abundant and complementary content41

knowledge from different modalities [8, 9, 10, 11, 12, 13]. To train a DNN well, large-scale42

annotations are often required; however, these are not always available, since labeling multi-modal43

data is time-consuming and even difficult. One may consider transferring the trained DNN on a labeled44

source domain to the unlabeled target domain as an alternate solution. Obviously, direct transfer45

cannot guarantee good generalization and often results in significant performance decay [14, 15, 16],46

because of the presence of domain shift [17], i.e. the distributions of observed multi-modal data and47

sentiment are different between the source and target domains. Aiming at minimizing the domain48

gap, domain adaptation (DA) [18, 19, 20, 21, 22] tries to learn a model on the labeled source domain49

that can generalize well to the target domain through specific alignment across domains, such as50

discrepancy-based, adversarial, and self-supervision-based methods.51

Current DA methods for visual-textual sentiment classification and other multi-modal learning52

tasks only focus on the single-source unsupervised setting [23, 24, 25, 26, 27], by assuming that53

the labeled source data is collected from the same distribution. However, in practice, it is more54

practical that the labeled multi-modal data comes from different source distributions [19, 21]. For55

example, user-generated reviews can be collected from Yelp, Twitter, and Amazon. We can naively56

combine different sources into one source and directly apply existing single-source DA algorithms.57

However, because of the neglect of mis-alignment across different sources, such methods may lead to58

sub-optimal results [21] (see the comparison between single-best and source-combined MM-SADA59

in Table 1). Therefore, effective multi-source domain adaptation (MSDA) techniques [19, 21] are60

required to sufficiently leverage the complementary information from different sources.61

Recently, some deep MSDA methods have been proposed. Based on different alignment strategies,62

Zhao et al. classified them into two categories [21], i.e. latent space transformation [28, 29, 30, 31,63

32, 33, 34, 35, 36, 16, 37, 38, 39] and intermediate domain generation [40, 41, 42, 43, 44]. All these64

MSDA methods only consider a single modality, such as text or image. When extending them to65

a multi-modal setting, they usually fail since they cannot deal well with the heterogeneity gap, i.e.66

the semantic difference between data in different modalities (e.g. heterogeneity of the feature space67

of each modality and data content) [23]. Therefore, ineffectively aligning feature representations68

and mining cross-modal information may result in interference among different modalities, leading69

classification models to fail to capture accurate and stable sentiment-related patterns.70

In this paper, we generalize the single-source MMDA and single-modal MSDA problems to multi-71

source multi-modal domain adaptation (MS-MMDA) problem, and design a novel multi-source multi-72

modal contrastive adversarial network, termed M2CAN, for visual-textual sentiment classification.73

First, we use a pair of pre-trained image and text encoders in order to project images and texts from74

different domains into a continuous latent feature space. Second, we perform different alignments to75

learn domain-invariant multi-modal representations, including (1) cross-modal contrastive alignment76

on the transformed lower-dimensional representations obtained by a non-linear transformation layer77

within each domain, (2) cross-domain constrastive alignment on the original representations for78

each modality, and (3) cross-domain adversarial alignment on the fused multi-modal representations79

obtained by multi-modal low-rank bi-linear pooling. Finally, we train a transferable task sentiment80

classifier based on the aligned multi-modal feature representations and corresponding source labels.81

Extensive experiments are conducted on a combined dataset consisting of three domains, i.e. Yelp [12],82

Twitter [45], and MVSA [46]. The results demonstrate that M2CAN significantly outperforms the83

state-of-the-art DA methods for visual-textual sentiment classification.84

In summary, the contributions of this paper are threefold: (1) We propose to study a novel and85

practical DA setting, i.e. multi-source multi-modal domain adaptation (MS-MMDA), for visual-86

textual sentiment classification. To the best of our knowledge, this is the first work that investigates87

MMDA with multiple sources. (2) We propose a novel MS-MMDA method, termed M2CAN,88

by contrastive and adversarial learning. Through both cross-modal alignment and cross-domain89

alignment, M2CAN can learn domain invariant multi-modal representations and thus minimizes90

the domain gap among multiple sources and the target. (3) We conduct extensive experiments on91

a benchmark dataset with three different domains. As compared to the best baseline, the proposed92

M2CAN achieves 2.7% performance gains on the average classification accuracy.93
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Figure 1: Illustration of the proposed M2CAN framework: (a) image-text feature encoding and
cross-model contrastive alignment, (b) cross-domain contrastive alignment, and (c) cross-domain
adversarial alignment and task classifier learning. All images and texts are encoded with encoders
(ResNet50 [47] and BERT [48]) to a latent continuous feature space. Three different alignments
are then performed to learn domain-invariant multi-modal representations, including cross-modal
contrastive alignment on the transformed lower-dimensional representations obtained by non-linear
transformation, cross-domain constrastive alignment on the original representations for each modality,
and cross-domain adversarial alignment on the fused multi-modal representations obtained by multi-
modal low-rank bi-linear pooling (MLB). A transferable task sentiment classifier is finally trained
based on the aligned multi-modal (mm) feature representations and corresponding source labels.

2 Multi-source Multi-modal Domain Adaptation Network94

We consider the multi-source domain adaptation setup for visual-textual sentiment classification,95

under the covariate shift assumption [18]. Assume access to K source domains {Si}Ki=1 with96

labeled training data and a target domain T with unlabeled training data consisting of two modalities,97

i.e. image and text. Each domain Si contains a set of examples drawn from a joint distribution98

p(Si)(xtext, ximage, y) on the input space Xtext × Ximage and the output space Y , and we seek to99

learn a sentiment classifier f : Xtext ×Ximage → Y that is transferable to a target domain T , where100

only unlabeled data is available. In this section, we give an overview of M2CAN, present each101

component of M2CAN in detail, and finally introduce the joint learning process.102

2.1 Overview103

The proposed M2CAN bridges the domain gap by performing both contrastive and adversarial104

alignments among the source and target domains. The framework is shown in Figure 1. In addition to105

the pre-trained encoders to encode texts and images from different domains into a semantic-preserving106

latent continuous feature space and the task classifier to train the final sentiment classification model107

based on the aligned multi-modal features, it consists of three primary alignment components:108

Cross-modal contrastive alignment (CMCA): Align the encoded lower-dimensional representations109

between different modalities within each domain. The visual and textual representations are projected110

into a lower-dimensional space with a non-linear transformation layer to extract data transformation-111

invariant features. A contrastive loss is employed to align visual and textual representations by112

minimizing the spatial distance between related image and text and maximizing the distance between113

unrelated pairs.114

Cross-domain contrastive alignment (CDCA): Align the encoded original representations between115

different domains for each modality. Considering that domain gap exists in each modality, the116

discrepancy between different domains is decreased for each modality through contrastive learning.117

Due to the fact that there are no negative pairs of samples, applying the same mechanism with118

CMCA can lead to mode collapse of non-linear layer, i.e. the non-linear layer might tend to project119

dissimilar higher dimensional features into similar lower dimensional features. Therefore, the CDCA120

is constructed on the original feature space.121

Cross-domain adversarial alignment (CDAA): Align the fused multi-modal representations between122

different domains. A fused multi-modal feature space Xmm is created by using a bi-linear pooling123
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layer, which learns a semantic-preserving and semantic-relevant projection Xtext ×Ximage → Xmm.124

Adversarial learning is employed to align the fused multi-modal features from different domains.125

2.2 Cross-modal Contrastive Alignment126

Simply extracting visual and textual features using separate encoders does not take the discrepancy127

between features in different modalities into account. Practically, user-generated data of visual-textual128

pairs might contain unrelated sentiment information. Furthermore, unaligned visual and textual129

features are from different feature spaces, which might affect the sentiment classification network’s130

ability to learn appropriate patterns related to sentiment. Therefore, alignment between features from131

multiple modalities is necessary. For this purpose, we follow [49] and incorporate a contrastive loss132

into our network. By applying data augmentation in both images and texts, we construct positive133

and negative sample pairs of different modalities in each domain on a lower-dimensional space134

using a non-linear transformation layer. Since the non-linear layer is trained to be invariant to data135

transformation, it can remove information that may be useful for the downstream task, such as the136

color and orientation of objects, or tone-related words. By leveraging the non-linear transformation,137

more information can be formed and maintained in the original features [49]. Assuming we have a138

batch of visual features I , and corresponding batch of textual features T , after data augmentation, the139

corresponding batches of visual and textual features are I ′ and T ′, the cross-modal contrastive loss140

can be constructed as follows [50]:141

I = g(Ximg), I′ = g(X ′img),T = g(Xtxt),T′ = g(Xtxt), (1)

LCMCA = − 1

n
· 1T · log

[
eI◦T + eI◦T

′
+ eI

′◦T + eI
′◦T′

1T ·
(
eI·TT + eI·T′T + eI′·TT + eI′·T′T ) · 1

]
, (2)

where g : Rd → Rd′
is a lower-dimensional projection function, d represents the dimension of142

original visual and textual feature, while d′ represents the dimension after projection, Ximg ∈ Rn×d,143

Xtxt ∈ Rn×d, X ′img ∈ Rn×d, and X ′txt ∈ Rn×d represent a batch of original visual and textual144

feature, and a batch of augmented visual and textual feature respectively, ◦ represents the Hadamard145

product, and n denotes the batch size. By minimizing the distance between visual and textual features146

from the same sample and maximizing the distance between visual and textual feature from different147

samples before and after data augmentation, our cross-modal contrastive loss is able to force the148

encoders to extract closer features from semantically similar samples and farther apart features from149

semantically different samples robustly, which achieves the purpose of CMCA.150

2.3 Cross-domain Contrastive Alignment151

To describe the similarity of two distributions, we introduce the Maximum Mean Discrepancy (MMD),152

as described below:153

DH(P,Q) , sup
f∼H

(
EXs [f (Xs)]− EXt

[
f
(
Xt
)])
H , (3)

where Xs and Xt are sampled from the marginal distributions P (Xs) and Q(Xt) respectively,H is154

a class of function. Formally, MMD defines the difference between two distributions with their mean155

representations in the reproducing kernel Hilbert space (RKHS) [51]. In practice, the squared value156

of MMD is estimated with the empirical kernel mean representations:157

D̂mmd =
1

n2s

ns∑
i=1

ns∑
j=1

k
(
φ (xs

i ) , φ
(
xs
j

))
+

1

n2t

nt∑
i=1

nt∑
j=1

k
(
φ
(
xt
i

)
, φ
(
xt
j

))
− 2

nsnt

ns∑
i=1

nt∑
j=1

k
(
φ (xs

i ) , φ
(
xt
j

))
,

(4)

where xs ∈ S , xt ∈ T , ns and nt denote the batch sizes, and k denotes a kernel function. We adopt158

the third term and ignore the first two terms in Eq. (4). Due to the existence of multiple modalities, we159

decompose the gap between two domains into two parts, i.e. visual domain gap and textual domain160
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gap, and minimize the corresponding MMD:161

LCDCA =Σs1,s2ΣIs1 ,Is2 ,T s1 ,T s2 −
2

ns1ns2

ns1∑
i=1

ns2∑
j=1

k
(
φ (Is1i ) , φ

(
Is2j
))

− 2

ns1ns2

ns1∑
i=1

ns2∑
j=1

k
(
φ (T s1

i ) , φ
(
T s2
j

))
,

s1 ∈ Dom, s2 ∈ Dom\s1, Dom = {S1, S2, ..., SK , T}, Isi ∈ Is ∈ Xs
img ∪Xs′

img, T s
i ∈ T s ∈ Xs

txt ∪Xs′
txt,

(5)

where Xs
img and Xs′

img are all the possible visual feature batches in domain s with and without data162

augmentation, Xs
txt and Xs′

txt are are all the possible textual feature batches in domain s with and163

without data augmentation, s ∈ {s1, s2, ..., sK}. We choose the linear kernel as k. Therefore, the164

above cross-domain contrastive loss can be simplified as below:165

LCDCA = Σs1,s2ΣIs1 ,Is2 ,T s1 ,T s2 −
2

ns1ns2

· 1T · Is1 · I
T
s2 · 1−

2

ns1ns2

· 1T · Ts1 · T
T
s2 · 1. (6)

Since we cannot construct negative sample pairs as in CMCA, optimizing the above function on166

lower-dimensional space will cause the lower-dimensional projection function g to project all visual167

and textual features to all-zero features, resulting in feature encoders that are not able to learn any168

useful pattern. Therefore, the above optimization problem is run with on the original visual and169

textual features.170

2.4 Cross-domain Adversarial Alignment171

To better fuse the visual and textual features and produce a multi-modal feature space that includes172

enough sentiment-related visual-textual information, we choose a bi-linear model [52] to fuse each173

pair of features from different modalities into factors related with sentiment:174

fi =

N∑
p=1

M∑
q=1

wipqIpT q + bi = ITWiT + bi, (7)

where I and T are visual and textual features, and N and M represent the dimension of feature I175

and T , respectively. Wi ∈ RN×M represents the weight matrix for output fi, and bi represents the176

bias. Assuming the dimension of output feature is L, the number of parameters of bi-linear model is177

L× (N ×M + 1) including bias vector b. According to a low-rank bi-linear method which is able178

to reduce the dimension of the weight matrix [53], the weight matrix can be decomposed into the179

product of two low-order matrices, which can be described as: Wi = UiV
T
i , where Ui ∈ RN×d and180

Vi ∈ RM×d. Therefore, the output feature fi can be formalized as:181

fi = ITWiT + bi = ITUiV
T
i T + bi = 1

T
(
UT

i I ◦VT
i T
)

+ bi, (8)
where 1 represents a column vector consisting of component 1. Still, we need two third-order182

tensors, U and V, for a feature vector f , whose elements are {fi}. To reduce the order of the weight183

tensors by one and introduce non-linear activation function, we adopt the following bi-linear pooling184

function [54]:185

f = PT
(
σ
(
UTI

)
◦ σ
(
VTT

))
+ himg(I) + htxt(T ) + b, (9)

where f represents our multi-modal feature, σ is a non-linear activate function, and hx and hy are186

shortcut mappings.187

In order to bridge the domain gap across multiple source domains and the target domain in the188

fused multi-modal feature space, we construct cross-domain adversarial alignment. Specifically, we189

introduce a set of domain classifiers as discriminators, which are used to distinguish source features190

from target features for each source. By assuming that the above encoders and bi-linear pooling191

layer as a feature extractor, we can construct an adversarial loss [55] and train the feature extractor192

to generate indistinguishable features that aim to fool the discriminators. This gives the following193

cross-domain adversarial loss:194

LCDAA = ΣK
i=1{E(ximg,xtxt)∼(Ximage,Xtext) log[Di

(
G(ximg, xtxt)

)
]

+ E(ximg,xtxt)∼(Ximage,Xtext) log[1−Di(G(ximg, xtxt))]},
(10)

where G denotes the feature extractor which includes the image and text encoder and the bi-linear195

pooling layer, we can see G(ximg, xtxt) as the multi-modal feature f , and Di denotes the discrimina-196

tor belonging to source i.197
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2.5 M2CAN Learning198

We can train a transferable sentiment classifier over the multi-modal feature space: ft : F → Y ,199

where F is the space of multi-modal feature f :200

Ltask = −Eximg,xtxt,y)∼(XS
image,XS

text,YS)

[
− logP

(
y|ft

(
G(ximg, xtxt)

))]
. (11)

The final objective function of M2CAN is a weighted combination of different losses:201

LM2CAN = Ltask + λ1 · LCDAA + λ2 · LCMCA + λ3 · LCDCA, (12)

where λ1, λ2, λ3 are weights for different losses. This objective function can be optimized by solving202

the following min-max game:203

f∗t = arg min
ft

min
G

max
D1,D2

LM2CAN. (13)

3 Experiments204

Here we introduce the experimental settings and compare the sentiment classification results of205

M2CAN and several state-of-the-art DA approaches, followed by ablation study and visualization.206

3.1 Experimental Settings207

Datasets. Since we are the first to study the novel MS-MMDA setting and there is no specific dataset208

on this task, we evaluate our approach using a combined dataset, which consists of three public209

datasets on visual-textual sentiment: Yelp [12], Twitter [45], and MVSA [46]. We regard the three210

datasets as different domains since they follow different distributions. We create multiple MS-MMDA211

settings by taking each domain as target and the rest as sources in each setting.212

The Yelp domain [12] contains customer-generated reviews of food services, e.g. restaurants,213

cafeterias, and dessert shops. In total, it has more than 44,000 reviews, including 244,000 images.214

Each review has a piece of textual comment, at least 3 images, and a score of sentiment polarity215

ranging from 1 to 5. We consider those reviews with scores of 1 and 2 as carrying negative sentiment,216

those with scores of 3 as carrying neutral sentiment, and those with scores of 4 and 5 as carrying217

positive sentiment. The Twitter domain [45] contains 50,000 user-generated tweets with images218

released on Twitter. Each tweet is composed of one textual review, several images, and a three-type219

sentiment label: negative, neutral, and positive. The MVSA domain [46] is also collected from220

Twitter. Similar to the Twitter domain, each tweet in MVSA consists of one textual review, several221

images, and a three-type sentiment label: negative, neutral, and positive. Specifically, each tweet is222

annotated by three experts. We abandon the tweets annotated with three different labels, and keep223

the tweets with at least two agreements. To balance the amount of samples in different domains, we224

randomly choose 15,000 samples as training set and 1,500 samples as test set for all domains.225

Evaluation Metrics. Following [32, 29], we employ classification accuracy to evaluate the multi-226

modal sentiment classification results. Larger classification accuracy indicates better performance.227

Baselines. We compare M2CAN with the following baselines: (1) Source-only, directly training on228

the source domains and testing on the target domain, which includes two settings: single-best, the229

best test accuracy on target among all source domains; source-combined, the target accuracy of the230

model trained on the combined source domain. (2) Single-source MMDA methods, including state-231

of-the-art approaches MMAN [23], MM-SADA [25], and xMUDA [26] trained with both single-best232

and source-combined settings. (3) Multi-source MMDA methods, including the state-of-the-art233

approach MDAN [32] and the proposed M2CAN. We also report the results of an oracle setting,234

where the model is both trained and tested on the target domain. We can view the oracle results as an235

upper bound for domain adaptation.236

Implementation Details. For the image encoder, we use Resnet-50 [47]. For the text encoder, we237

use a 12-layer “bert-base-uncased” version BERT [48]. The weights for Ltask, LGAN, LCMCA, and238

LCDCA are 1, 0.02, 0.02 and 0.05, respectively. We use a 2-layer multi-layer perceptron (MLP) to239

implement the lower-dimensional projection function g, and a fully-connected layer with activation240

function ReLU to implement both the discriminators and the task classifier. We use Adam [56] as the241
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Table 1: Comparison with the state-of-the-art DA methods on the combined dataset for visual-textual
sentiment classification. All results are percentages. The best and second best classification accuracies
trained on the source domains are emphasized with bold and underline respectively (same in Table 2).

Standards Models Yelp Twitter MVSA Avg

Source-only
Source-combined (text only) 57.3 62.2 55.8 58.4

Source-combined (text & image) 56.7 59.1 57.8 57.9
Single-best (text & image) 56.9 61.8 57.2 58.6

Single-best MMDA
MMAN [23] 57.5 62.5 58.8 59.6

MM-SADA [25] 58.1 66.0 58.3 60.8
xMUDA [26] 58.7 64.3 57.6 60.2

Source-combined MMDA
MMAN [23] 55.8 64.2 60.8 60.3

MM-SADA [25] 57.5 63.2 60.3 60.3
xMUDA [26] 56.2 63.1 62.0 60.4

Multi-source MMDA MDAN [32] 58.6 64.1 61.2 61.3
M2CAN (Ours) 62.5 67.9 61.6 64.0

Oracle (train on target) 65.2 68.6 68.4 67.4

optimizer with a batch size of 8. The learning rate is 0.00002 for BERT and Resnet-50, and 0.0005242

for the rest. All experiments are implemented in PyTorch and conducted on a machine with a Tesla243

V100S-PCIE GPU with 32 GB memory. All implementation details are included in our source code.244

3.2 Comparison With State-of-the-art245

The performance comparisons between the proposed M2CAN and the baselines for visual-textual246

sentiment classification, including source-only, single-source MMDA, and multi-source MMDA, are247

shown in Table 1. From the results, we have the following observations:248

(1) Without alleviating the domain shift between the source and target domains, both source-only249

settings, i.e. single-best and source-combined, obtain poor classification accuracies, i.e. 58.6% and250

57.8%, which are almost 10% worse than the oracle setting (67.4%). When setting Yelp and Twitter251

as the target domain, it is clear that adding visual modality results in performance degradation for both252

single-best and source-combined source-only settings as compared to using textual modality only,253

e.g. 56.9% and 56.7 % vs. 57.3% on Yelp. This indicates that the large domain gap between source254

and target domains results in severe interference between different modalities. These observations255

motivate the research on domain adaptation.256

(2) When directly applying to the MS-MMDA task, both single-best and source-combined MMDA257

methods outperform the source-only setting. Since customers’ reviews vary a lot across domains,258

features that are related to sentiment also differ. Therefore, these MMDA methods that can mitigate259

the domain gap improve the sentiment classification results.260

(3) Comparing the performances of source-combined and single-best MMDA methods, we can261

find that naively performing single-source domain adaptation approaches on a combined dataset of262

different sources might produce worse result (i.e. 60.3% of MM-SADA) than that on the best single263

source (i.e. 60.8% of MM-SADA). This motivates our research on MS-MMDA.264

(4) The proposed M2CAN performs the best (64.0%) among all adaptation settings. Compared to the265

best results inside the source-only, single-best MMDA, source-combined MMDA, and multi-source266

MMDA, M2CAN achieves 5.4%, 3.2%, 3.6%, and 2.7% performance gains, respectively. These re-267

sults demonstrate that the proposed M2CAN model can achieve significantly better performance than268

the state-of-the-art DA methods for visual-textual sentiment classification. The superior performance269

of M2CAN benefits from the joint cross-modal alignment and cross-domain alignment.270

3.3 Ablation Study271

We conduct a series of ablation studies on the combined dataset to demonstrate the effectiveness of272

different components of M2CAN. The results are shown in Table 2. First, we verify the necessity of273

introducing extra modalities. Comparing the first two lines between with text only and with image274
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Table 2: Ablation study on different components of the proposed M2CAN on the combined dataset.

Models Yelp Twitter MVSA Avg

CDAA (text only) 57.2 62.8 58.1 59.4
CDAA (text & image) 58.5 64.2 61.7 61.5

CDAA + CMCA 61.1 64.5 61.6 62.4
CDAA + CDCA 61.3 65.2 61.9 62.8

CDAA + CMCA + CDCA (M2CAN) 62.5 67.9 61.6 64.0

and text for CDAA, we can see that after adding image, the average accuracy is improved by 2.1%,275

demonstrating the effectiveness of introducing multiple modalities. Second, we investigate whether276

it is necessary to construct the cross-domain adversarial alignment (CDAA). Comparing the first277

two lines in Table 2 and Table 1, it is clear the performance is significantly improved (e.g. 61.5% vs.278

57.9% when both image and text are used), demonstrating the effectiveness of adversarial alignment.279

Third, we investigate the effectiveness of cross-modal contrastive alignment (CMCA). From the280

third and second lines, we can see that compared to only using CDAA, adding CMCA achieves281

0.9% performance gain on the average classification accuracy, which demonstrates the necessity282

of the CMCA. Finally, we evaluate the influence of cross-domain contrastive alignment (CDCA).283

Comparing CDAA vs. CDAA+CDCA and CDAA+CMCA vs. CDAA+CMCA+CDCA, we can284

conclude that adding CDCA can further improve the performance, verifying that CDCA indeed285

contributes to the adaptation task.286

3.4 Visualization287

In this section, we visualize the features of source and target samples before and after adaptation using288

M2CAN. By using t-SNE [57] to reduce the dimensionality of samples, we plot the learned features289

onto a 2-dimensional plane, with the results shown in Figure 2. Figure (a) represents the feature290

representations before adaptation, while (b) represents the feature representations after adaptation by291

M2CAN. Red represents source features and blue represents target features. As we can see, before292

adaptation, source and target features can be obviously discriminated because of the existence of293

domain gap; while after adaptation, we can hardly distinguish between source and target features.294

Therefore, we can conclude that after adaptation the source and target features become more closely295

aligned, which further demonstrates the effectiveness of M2CAN. Furthermore, we also plot the loss296

curves in the training process. From Figure 3, we can observe that the different types of losses all297

decline and converge through the training process.298

3.5 Limitations299

The proposed M2CAN works under the covariate shift and closed set assumptions [18, 22] with300

labeled source data and unlabeled target data. When other domain shifts exist, such as label shift [22]301

and category shift [39], we cannot guarantee satisfactory domain adaptation performances. As302

stated in [22], there are many different domain adaptation settings, i.e. multiple target domains and303

open-set labels. The proposed method does not explore such characteristics and thus cannot be304

directly applied to these settings. Incorporating existing multi-source techniques, such as adding305

discrimination between different sources [40], would improve the performance. Considering the306

constraint of hardware resources, such as GPU memory, we did not exploit such techniques. Further,307

because of the absence of datasets for multi-source multi-modal domain adaptation, we only verify308

the effectiveness of M2CAN on a combined dataset with three different domains for visual-textual309

sentiment classification. Extending the proposed method to other multi-modal domain adaptation310

with multiple sources and exploring how to perform MS-MMDA when some sources contain few311

labeled and sufficient unlabeled data remains our future work.312

4 Conclusion313

In this paper, we studied a novel and practical domain adaptation problem, i.e. multi-source multi-314

modal domain adaptation (MS-MMDA), for visual-textual sentiment classification. The designed315

multi-source multi-modal contrastive adversarial network (M2CAN) can learn domain-invariant multi-316
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(a) Before adaptation

(a) After adaptation

Figure 2: t-SNE visualization of multi-modal features before and after adaptation. Red represents
source features and blue represents target features. We use Y, T, and M as abbreviations respectively
for domains Yelp, Twitter, and MVSA for better visualization.

Figure 3: Visualization of different losses during the training process, including cross-modal con-
trastive loss, cross-domain contrastive loss and the task classification loss.

modal features by three different alignment strategies, i.e. cross-modal contrastive alignment within317

each domain, cross-domain contrastive alignment for each modality, and cross-domain adversarial318

alignment on the fused multi-modal representation. The cross-modal contrastive loss aligns visual and319

textual features, pulling semantic-related sample pairs closer and pushing semantic-unrelated sample320

pairs farther. The cross-domain contrastive loss together with domain adversarial loss bridge the321

domain gap between the source and target domains while preserving the sentiment semantics through322

contrastive learning and adversarial learning, respectively. Extensive experiments on a combined323

dataset demonstrate the superiority of the proposed M2CAN as compared to the state-of-the-art DA324

methods for visual-textual sentiment classification.325
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